Nanjing University
Abstract:Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
Abstract:Forced alignment (FA) predicts start and end timestamps for words or characters in speech, but existing methods are language-specific and prone to cumulative temporal shifts. The multilingual speech understanding and long-sequence processing abilities of speech large language models (SLLMs) make them promising for FA in multilingual, crosslingual, and long-form speech settings. However, directly applying the next-token prediction paradigm of SLLMs to FA results in hallucinations and slow inference. To bridge the gap, we propose LLM-ForcedAligner, reformulating FA as a slot-filling paradigm: timestamps are treated as discrete indices, and special timestamp tokens are inserted as slots into the transcript. Conditioned on the speech embeddings and the transcript with slots, the SLLM directly predicts the time indices at slots. During training, causal attention masking with non-shifted input and label sequences allows each slot to predict its own timestamp index based on itself and preceding context, with loss computed only at slot positions. Dynamic slot insertion enables FA at arbitrary positions. Moreover, non-autoregressive inference is supported, avoiding hallucinations and improving speed. Experiments across multilingual, crosslingual, and long-form speech scenarios show that LLM-ForcedAligner achieves a 69%~78% relative reduction in accumulated averaging shift compared with prior methods. The checkpoint and inference code will be released later.
Abstract:Automatic speech recognition (ASR) systems based on large language models (LLMs) achieve superior performance by leveraging pretrained LLMs as decoders, but their token-by-token generation mechanism leads to inference latency that grows linearly with sequence length. Meanwhile, discrete diffusion large language models (dLLMs) offer a promising alternative, enabling high-quality parallel sequence generation with pretrained decoders. However, directly applying native text-oriented dLLMs to ASR leads to a fundamental mismatch between open-ended text generation and the acoustically conditioned transcription paradigm required by ASR. As a result, it introduces unnecessary difficulty and computational redundancy, such as denoising from pure noise, inflexible generation lengths, and fixed denoising steps. We propose dLLM-ASR, an efficient dLLM-based ASR framework that formulates dLLM's decoding as a prior-guided and adaptive denoising process. It leverages an ASR prior to initialize the denoising process and provide an anchor for sequence length. Building upon this prior, length-adaptive pruning dynamically removes redundant tokens, while confidence-based denoising allows converged tokens to exit the denoising loop early, enabling token-level adaptive computation. Experiments demonstrate that dLLM-ASR achieves recognition accuracy comparable to autoregressive LLM-based ASR systems and delivers a 4.44$\times$ inference speedup, establishing a practical and efficient paradigm for ASR.
Abstract:We present S$^2$Voice, the winning system of the Singing Voice Conversion Challenge (SVCC) 2025 for both the in-domain and zero-shot singing style conversion tracks. Built on the strong two-stage Vevo baseline, S$^2$Voice advances style control and robustness through several contributions. First, we integrate style embeddings into the autoregressive large language model (AR LLM) via a FiLM-style layer-norm conditioning and a style-aware cross-attention for enhanced fine-grained style modeling. Second, we introduce a global speaker embedding into the flow-matching transformer to improve timbre similarity. Third, we curate a large, high-quality singing corpus via an automated pipeline for web harvesting, vocal separation, and transcript refinement. Finally, we employ a multi-stage training strategy combining supervised fine-tuning (SFT) and direct preference optimization (DPO). Subjective listening tests confirm our system's superior performance: leading in style similarity and singer similarity for Task 1, and across naturalness, style similarity, and singer similarity for Task 2. Ablation studies demonstrate the effectiveness of our contributions in enhancing style fidelity, timbre preservation, and generalization. Audio samples are available~\footnote{https://honee-w.github.io/SVC-Challenge-Demo/}.
Abstract:Speech processing for low-resource dialects remains a fundamental challenge in developing inclusive and robust speech technologies. Despite its linguistic significance and large speaker population, the Wu dialect of Chinese has long been hindered by the lack of large-scale speech data, standardized evaluation benchmarks, and publicly available models. In this work, we present WenetSpeech-Wu, the first large-scale, multi-dimensionally annotated open-source speech corpus for the Wu dialect, comprising approximately 8,000 hours of diverse speech data. Building upon this dataset, we introduce WenetSpeech-Wu-Bench, the first standardized and publicly accessible benchmark for systematic evaluation of Wu dialect speech processing, covering automatic speech recognition (ASR), Wu-to-Mandarin translation, speaker attribute prediction, speech emotion recognition, text-to-speech (TTS) synthesis, and instruction-following TTS (instruct TTS). Furthermore, we release a suite of strong open-source models trained on WenetSpeech-Wu, establishing competitive performance across multiple tasks and empirically validating the effectiveness of the proposed dataset. Together, these contributions lay the foundation for a comprehensive Wu dialect speech processing ecosystem, and we open-source proposed datasets, benchmarks, and models to support future research on dialectal speech intelligence.
Abstract:Despite rapid progress in text-to-speech (TTS), open-source systems still lack truly instruction-following, fine-grained control over core speech attributes (e.g., pitch, speaking rate, age, emotion, and style). We present VoiceSculptor, an open-source unified system that bridges this gap by integrating instruction-based voice design and high-fidelity voice cloning in a single framework. It generates controllable speaker timbre directly from natural-language descriptions, supports iterative refinement via Retrieval-Augmented Generation (RAG), and provides attribute-level edits across multiple dimensions. The designed voice is then rendered into a prompt waveform and fed into a cloning model to enable high-fidelity timbre transfer for downstream speech synthesis. VoiceSculptor achieves open-source state-of-the-art (SOTA) on InstructTTSEval-Zh, and is fully open-sourced, including code and pretrained models, to advance reproducible instruction-controlled TTS research.
Abstract:This paper summarizes the ICASSP 2026 Automatic Song Aesthetics Evaluation (ASAE) Challenge, which focuses on predicting the subjective aesthetic scores of AI-generated songs. The challenge consists of two tracks: Track 1 targets the prediction of the overall musicality score, while Track 2 focuses on predicting five fine-grained aesthetic scores. The challenge attracted strong interest from the research community and received numerous submissions from both academia and industry. Top-performing systems significantly surpassed the official baseline, demonstrating substantial progress in aligning objective metrics with human aesthetic preferences. The outcomes establish a standardized benchmark and advance human-aligned evaluation methodologies for modern music generation systems.
Abstract:The environmental and target-related information inherently carried in wireless signals, such as channel state information (CSI), has brought increasing attention to integrated sensing and communication (ISAC). However, it also raises pressing concerns about privacy leakage through eavesdropping. While existing efforts have attempted to mitigate this issue, they either fail to account for the needs of legitimate communication and sensing users or rely on hardware with high complexity and cost. To overcome these limitations, we propose PrivISAC, a plug-and-play, low-cost solution that leverages RIS to protect user privacy while preserving ISAC performance. At the core of PrivISAC is a novel strategy in which each RIS row is assigned two distinct beamforming vectors, from which we deliberately construct a limited set of RIS configurations. During operation, exactly one configuration is randomly activated at each time slot to introduce additional perturbations, effectively masking sensitive sensing information from unauthorized eavesdroppers. To jointly ensure privacy protection and communication performance, we design the two vectors such that their responses remain nearly identical in the communication direction, thereby preserving stable, high-throughput transmission, while exhibiting pronounced differences in the sensing direction, which introduces sufficient perturbations to thwart eavesdroppers. Additionally, to enable legitimate sensing under such randomized configurations, we introduce a time-domain masking and demasking method that allows the authorized receiver to associate each CSI sample with its underlying configuration and eliminate configuration-induced discrepancies, thereby recovering valid CSI. We implement PrivISAC on commodity wireless devices and experiment results show that PrivISAC provides strong privacy protection while preserving high-quality legitimate ISAC.
Abstract:The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://lewandofskee.github.io/projects/OpenVE.
Abstract:This paper investigates the performance of the adaptive matched filtering (AMF) in cluttered environments, particularly when operating with superimposed signals. Since the instantaneous signal-to-clutter-plus-noise ratio (SCNR) is a random variable dependent on the data payload, using it directly as a design objective poses severe practical challenges, such as prohibitive computational burdens and signaling overhead. To address this, we propose shifting the optimization objective from an instantaneous to a statistical metric, which focuses on maximizing the average SCNR over all possible payloads. Due to its analytical intractability, we leverage tools from random matrix theory (RMT) to derive an asymptotic approximation for the average SCNR, which remains accurate even in moderate-dimensional regimes. A key finding from our theoretical analysis is that, for a fixed modulation basis, the PSK achieves a superior average SCNR compared to QAM and the pure Gaussian constellation. Furthermore, for any given constellation, the OFDM achieves a higher average SCNR than SC and AFDM. Then, we propose two pilot design schemes to enhance system performance: a Data-Payload-Dependent (DPD) scheme and a Data-Payload-Independent (DPI) scheme. The DPD approach maximizes the instantaneous SCNR for each transmission. Conversely, the DPI scheme optimizes the average SCNR, offering a flexible trade-off between sensing performance and implementation complexity. Then, we develop two dedicated optimization algorithms for DPD and DPI schemes. In particular, for the DPD problem, we employ fractional optimization and the KKT conditions to derive a closed-form solution. For the DPI problem, we adopt a manifold optimization approach to handle the inherent rank-one constraint efficiently. Simulation results validate the accuracy of our theoretical analysis and demonstrate the effectiveness of the proposed methods.